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Multifractal characterization of liquid water in clouds

Kristinka Ivanova*
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The variations of atmospheric quantities are often represented by highly fluctuating time series. Therefore,
specially designed analysis tools are needed to study signals which vary on many scales. Recently, Daviset al.
@J. Geophys. Res.99, 8055~1994!# proposed a new technique for analysis of complex nonlinear geophysical
processes observed over large time or space scales. The approach is aimed at investigating nonstationarity and
intermittency as two complementary features of the geophysical fields. We apply the multifractal analysis to a
liquid water path time series obtained via ground-based remote sensing measurements. On the (H1 ,C1) plane
we compare the results from this study with the results of direct measurements of liquid water content during
the same field program and those reported by other authors.@S1063-651X~99!11803-8#

PACS number~s!: 02.50.2r, 05.40.2a, 05.45.Df, 05.45.Tp
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I. INTRODUCTION

A new technique for data analysis of complex nonline
geophysical processes observed over a large range of s
and/or time scales has recently been proposed@1#. The tech-
nique is aimed at investigating nonstationarity and interm
tency as two complementary features of geophysical d
These properties are especially pertinent to atmospheric
series due to the complex influence of external forces on
the internal variability of clouds. The approach seeks
various scales of self-affinity, i.e., searches for multiaffini
It is a multifractal @2# data analysis tool developed speci
cally for turbulent cascade phenomenology@3,4# on one
hand, and for characterization of nonlinear dynamical s
tems@5# on the other. The analysis involves first a criteri
for stationarity of the data assuming a power-law behavio
the energy spectrum; the latter is ubiquitous in natural s
tems and phenomena@6#. Then two straightforward proce
dures are applied: singular measures andqth-order structure
functions.

The singular measures approach seeks power-law be
ior in integrals over all possible scales of a non-negat
stationary field derived from the data, thus characterizing
intermittency. In contrast, the structure functions appro
uses the data themselves to seek power-law dependenc
the statistical moments of absolute increments over arbit
large scales, thus leading to a quantitative and qualita
description of nonstationarity.

The multifractal approach was applied to study the sta
tical properties of liquid water content~LWC! spatial struc-
ture in marine stratocumulus clouds@1,7#. The authors ana
lyze a large database of LWC time series collected
aircraft during the First ISCCP~International Satellite Cloud
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Climatology Project! Regional Experiment~FIRE! @8# and
Atlantic Stratocumulus Transition Experiment~ASTEX! @9#
field programs. Data collected in both experiments were
tained by direct measurements of the liquid water cont
when aircraft passed through cloud. We intend to apply
multifractal data series analysis to the remotely measu
liquid water path~LWP! database obtained using a micr
wave radiometer and acquired by the Department of Met
rology of Pennsylvania State University during the ASTE
field program. The microwave radiometer measures the n
emittance of the atmosphere at three microwave frequenc
These emittances are then used to retrieve total column w
vapor and liquid water path. Liquid water path is the vertic
integral of liquid water content. Because the structure of s
tocumulus clouds is produced by ascending and descen
air parcels and therefore vertically contiguous, we expect
variability in LWP to be similar to that of LWC. However
the field of view of the microwave radiometer is 5°, leadin
to a sample volume diameter of about 175 m at a height o
km. This larger sample volume smooths the LWP time se
relative to the aircraft measured LWC time series.

Finally, it should be noted that this type of analysis tur
out to be amenable to data of a very different nature from
above. Using the multiaffine fractal-like measures, Van
walle and Ausloos@10# study the evolution of 23 foreign
exchange currency rates~with respect to the Deutsche mar
and Belgium franc, both for emerging markets and well co
trolled ones!. These authors have shown that the behav
looks like a process of turbulence but with well-~3! sepa-
rated ‘‘categories’’ depending on the involved mon
~strictly regulated european, hard dollar zone, emerging m
kets!.

II. THE LWP DATA SETS AND THEIR SCALING
PROPERTIES

We consider four data sets corresponding to four differ
days of observations, June 14, 15, 17, and 20, 1992~Fig. 1!.

ec-
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FIG. 1. The liquid water path~LWP! data sets measured with a microwave radiometer during the ASTEX’92 field program; the sp
dates are~a! June 14,~b! June 15,~c! June 17, and~d! June 20.
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They are chosen from among 26 data sets as being comp
that is, not containing missing observation points, and
forming a statistically homogeneous whole. Each profile
assumed to satisfy the Taylor’s hypothesis@11#. The time
resolution of the measurements is 5 min. Each data set
tains 288 points covering a 24 h observation length.

If we knew the speed of the cloud displacement we co
retrieve the discretization distance and then proceed with
analysis in space rather than in time. That would have gi
us a more direct comparison with FIRE and ASTEX in ter
of distances, especially for the scaling ranges. It would, ho
ever, also assume that the cloud properties are invariant
ing the advection time. This assumption is certainly qu
tionable, especially since our observations were taken on
windward side of an island.

The scale invariance properties of each of the data sets
first studied through their temporal power spectrum obtai
from the Fourier transform of the data. Figure 2~a! depicts
the spectrumE( f ); f 2b averaged over the four data se
The reference solid line corresponds tob51.49. Due to the
relatively short length of the series, their scaling range is
well defined. In an attempt to achieve better defined sca
limits, we analyze the second-order structure function wh
for a signalw(xi),i 50, . . . ,L, reads
te,
s
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D~r !5^uw~xi 1r !2w~xi !u2& ~1!

and scales as

D~r !}~r !z~2!. ~2!

The average is taken over all couples (xi 1r ,xi). Figure 2~b!
represents the best-line fit to the ensemble averagedD(r )
with z(2)50.4960.02. The scaling range spans from t
discretization time interval up to'1 h,35 min. The scaling
range in the different sets is about the same. Only the J
17 data set exhibits a wider scaling range up to'2 h. The
values ofz(2) for the four data sets are included in Table
Although it cannot be claimed that the scaling counterpar
the Wiener-Khinchin relation@12#

b5z~2!11 ~3!

holds for such short time series~hence not well-definedb),
one can recognize the advantage in employing theD(r ) scal-
ing properties in parallel with the spectrum analysis for e
mating the spectral exponent. It should be noted also that
span ofz(2) does not make a substantial difference wh
attributed tob. This is illustrated by the dashed lines in Fi
2~a! ~hardly recognizable!. They correspond to spectral ex
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2780 PRE 59KRISTINKA IVANOVA AND THOMAS ACKERMAN
ponentsb51.4760.02. The value ofb51.49 is somewhat
greater than the spectral exponents reported by Daviset al.
@1# for FIRE, b51.3660.06, and for ASTEX,b51.43
60.08.

Arguments of stationarity are discussed at length by Da
et al. @1,13#. They can be summarized as follows. Ifb,1,

FIG. 2. Ensemble-averaged~a! power spectrumE( f ) and ~b!
second-order structure function for the remote sensing LWP d
The reference solid line corresponds tob51.49. The dashed line
mark b51.4960.12.~b! The straight line represents the scaling
with z50.4960.12 up to about 1 h,35 min.

TABLE I. Summary of the nonstationarity (H1) and intermit-
tency (C1) parameters for the four studied days and their ensem
average. The fourth column hosts values ofz(2) and the last col-
umn hosts the values ofK(2).

Date z(1)5H1 C1 z(2) K(2)

June 14 0.24 0.09 0.4560.04 0.19
June 15 0.33 0.10 0.3860.02 0.20
June 17 0.28 0.08 0.6760.01 0.13
June 20 0.34 0.13 0.4460.02 0.27
Ensemble
Averaged 0.29 0.10 0.4960.02 0.19
is

then the process is stationary, that is,w(x) is statistically
invariant by translation inx. If b.1, the signal is nonsta
tionary. If in addition b,3, then the field has stationar
increments, in particular, the small-scale gradient field w
be stationary. Therefore, the data we analyze are nonsta
ary with stationary increments.

III. SINGULAR MEASURES AND qTH-ORDER
STRUCTURE FUNCTIONS

The present section considers the intermittency and
nonstationarity features of the LWP data. The singular m
sure~SM! analysis of the small-scale gradient field obtain
from the data is performed to account for the intermitten

«~r ; l !5

r 21 (
i 5 l

l 1r 21

uw~xi 11!2w~xi !u

^uw~xi 11!2w~xi !u&
, l 50, . . . ,L2r .

~4!

The scaling properties of the ensemble averagedqth order of
the stationary field«(r ; l ) are sought,

^«~r ; l !q&;~r !2K~q!, q>0. ~5!

A hierarchy of nondecreasing functions followsC(q)
5K(q)/(q21) related also to the generalized dimensio
D(q)512C(q). Since K(1)50, l’Hospital’s rule in the
limit of q→1 provides a straightforward measure of inh
mogeneity of the field,

C15
dK~q!

dq U
q51

, ~6!

whereC1 is an intermittency parameter@14#. The sparsenes
of the signal and presumably, therefore, of the quantit
distribution is characterized byC1 . Large C1 describes a
high level of intermittency and spikiness.

Multifractal analysis can also be conducted with t
qth-order structure functions~SF!,

^uw~xi 1r !2w~xi !uq&;tz~q!, q>0. ~7!

Among the nonincreasing exponentsH(q)5z(q)/q, the
parameter of nonstationarityH15H(1) has a geometrically
meaningful interpretation@15,1#, describing the roughness o
the signal.

For each data set we apply the singular measures
structure functions analysis. First we calculate the singu
measures and structure functions for values ofq up to 3.8 for
each day. Then an ensemble average is taken over the
data sets for every value ofq. By applying a least-squares
fitting procedure to the structure functions in a log-log p
within the predefined range (<1 h,35 min), we estimate
the exponentz(q). The same scheme is followed for th
singular measures to assess theK(q) function, but for the
whole range of time intervals since this yields the lowe
error-bar spread~Fig. 3!. The valueH1 is highlighted by a
circle, and a line tangent toK(q) at q51 is drawn to em-
phasize theC15K8(1) estimate. For largeq both functions
suffer from the sampling limitations@1# as the structure func
tion values become very small, making the analysis diffic
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and resulting in larger error spreads forz(q). At the same
time, K(q) changes to a linear behavior which is interpret
to be the result of a single event dominating the statistics@1#.
Such properties of the characteristic exponents were
pected because of the relatively short data set. Howeve
nontrivial dependence for small and intermediateq is ob-
served, namely, the concavity of thez(q) function which is
interpreted to denote the multiaffinity@16# of the LWP field.
The convexity of theK(q) function reflects the multifracta
lity of the absolute gradients of the field at small scal
Table I contains the specific values of the parameters of n
stationarityH1 and intermittencyC1 , as well asK(2), for
the four data sets studied and their averages. It should
noted that the standard multifractal inequalitiesK(2)>C1
andz(2)/2<H1 are satisfied for all the cases except for Ju
17. For this data set the second inequality does not hold;
is attributed to a large burst of activity at the end in t
corresponding Fig. 1~c!, which imparts more statistical infor
mation to the prefactors in Eq.~7! than to the exponents.

In Fig. 4 the results for the two parameters are summ
rized on the (H1 ,C1) plane. The (H1 ,C1) dots correspond-
ing to the four data sets are noted by solid dots. The diam
labeled ASTEX/RS marks the ensemble-averaged estim
corresponding toH150.29 andC150.10. On the same plan
are drawn the results obtained by Daviset al. @1,13# and
Marshaket al. @7# for directly measured LWC during th
FIRE’87 ~the upside-down triangleH150.28, C150.10)
and ASTEX’92~the triangleH150.29, C150.08) field pro-
grams. In addition, by empty dots are marked the Brown
motion ~Bm! at (H1 ,C1)5(0.5, 0) and the fractiona
Brownian motion~fBm! at (H1 ,C1)5(1/3, 0). The latter
emphasize the difference between the multifractal data
the standard monofractal model. We consider the close p
imity of the nonstationarity and intermittency parameters
direct and remote measured liquid water as a strong ind
tion of the reliability of the multifractal estimates obtaine
from the remote sensing measurements. Indeed, the inte
tency parameter for all cases mentioned is within the ra
of C150.1160.04 for turbulent velocity fields, obtained b
Marshak et al. @7# using the range of second-order exp

FIG. 3. Ensemble-averaged exponent functionsK(q) and
qH(q)5z(q) as defined in the text by Eqs.~5! and~7! for the LWP
data shown in Fig. 1.
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nents. This good agreement betweenin situ and remotely
sensed statistical characteristics of boundary layer clo
suggests that long time series of ground-based observa
can be used to deduce the structure of these clouds.

IV. CONCLUSIONS

We use multifractal singularity analysis andqth-order
structure function analysis to study time series of LWP o
tained via remote sensing measurements. The behavior o
ensemble-averaged characteristic exponentsz(q) and K(q)
reflects the multifractal nature of the LWP record. The no
stationarity and intermittency of the real-world data are su
marized in an (H1 ,C1) point ~ASTEX/RS! in the ‘‘mean
multifractal plane.’’ It is found to be very close to point
obtained from directly measured LWC. The agreement c
firms the usefulness of remote sensing for the character
tion of the cloud structure in the lower atmosphere.
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FIG. 4. The (H1 ,C1) plot summarizing the liquid water dat
results from the direct measurements during FIRE’87~upside-down
triangle! and ASTEX’92~triangle! together with the remotely mea
sured LWP during ASTEX marked by solid dots for individual da
and by a diamond for their ensemble average. See Table I
(H1 ,C1) values for each day. The empty dots correspond
Brownian motion and fractional Brownian motion cases.
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