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Multifractal characterization of liquid water in clouds
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The variations of atmospheric quantities are often represented by highly fluctuating time series. Therefore,
specially designed analysis tools are needed to study signals which vary on many scales. Recenty,dDavis
[J. Geophys. Re€9, 8055(1994] proposed a new technique for analysis of complex nonlinear geophysical
processes observed over large time or space scales. The approach is aimed at investigating nonstationarity and
intermittency as two complementary features of the geophysical fields. We apply the multifractal analysis to a
liquid water path time series obtained via ground-based remote sensing measurements.HQnGhE glane
we compare the results from this study with the results of direct measurements of liquid water content during
the same field program and those reported by other autff®t963-651X99)11803-9

PACS numbgs): 02.50-r, 05.40—a, 05.45.Df, 05.45.Tp

[. INTRODUCTION Climatology Project Regional Experimen{FIRE) [8] and
Atlantic Stratocumulus Transition Experime®STEX) [9]

A new technique for data analysis of complex nonlinearfield programs. Data collected in both experiments were ob-
geophysical processes observed over a large range of spaééned by direct measurements of the liquid water content
and/or time scales has recently been propg4gdThe tech- ~ when aircraft passed through cloud. We intend to apply the
nique is aimed at investigating nonstationarity and intermit-multifractal data series analysis to the remotely measured
tency as two complementary features of geophysical datdiquid water path(LWP) database obtained using a micro-
These properties are especially pertinent to atmospheric dayave radiometer and acquired by the Department of Meteo-
series due to the complex influence of external forces on antplogy of Pennsylvania State University during the ASTEX
the internal variability of clouds. The approach seeks forfield program. The microwave radiometer measures the nadir
various scales of self-affinity, i.e., searches for multiaffinity. emittance of the atmosphere at three microwave frequencies.
It is a multifractal[2] data analysis tool developed specifi- These emittances are then used to retrieve total column water
cally for turbulent cascade phenomenolof;4] on one Vvapor and liquid water path. Liquid water path is the vertical
hand, and for characterization of nonlinear dynamical sysintegral of liquid water content. Because the structure of stra-
tems[5] on the other. The analysis involves first a criteriontocumulus clouds is produced by ascending and descending
for stationarity of the data assuming a power-law behavior oftir parcels and therefore vertically contiguous, we expect the
the energy spectrum; the latter is ubiquitous in natural sysvariability in LWP to be similar to that of LWC. However,
tems and phenomer®&]. Then two straightforward proce- the field of view of the microwave radiometer is 5°, leading
dures are applied: singular measures gtfgorder structure t0 @ sample volume diameter of about 175 m at a height of 1
functions. km. This larger sample volume smooths the LWP time series

The singular measures approach seeks power-law behakelative to the aircraft measured LWC time series.
ior in integrals over all possible scales of a non-negative Finally, it should be noted that this type of analysis turns
stationary field derived from the data, thus characterizing th@ut to be amenable to data of a very different nature from the
intermittency. In contrast, the structure functions approact®bove. Using the multiaffine fractal-like measures, Vande-
uses the data themselves to seek power-law dependence f@lle and Auslooq10] study the evolution of 23 foreign
the statistical moments of absolute increments over arbitrar§xchange currency ratéwith respect to the Deutsche mark
large scales, thus leading to a quantitative and qualitativ&nd Belgium franc, both for emerging markets and well con-
description of nonstationarity. trolled one$. These authors have shown that the behavior

The multifractal approach was applied to study the statislooks like a process of turbulence but with we(B) sepa-
tical properties of liquid water conteit WC) spatial struc- rated “categories” depending on the involved money
ture in marine stratocumulus cloufis, 7]. The authors ana- (strictly regulated european, hard dollar zone, emerging mar-
lyze a large database of LWC time series collected bykets.
aircraft during the First ISCCRBnternational Satellite Cloud

Il. THE LWP DATA SETS AND THEIR SCALING

_ ) ) PROPERTIES
*On leave from Institute of Electronics, Bulgarian Academy of

Sciences, 72 Tzarigradsko chaussee, Sofia 1784, Bulgaria. Elec- We consider four data sets corresponding to four different
tronic address: kristy@ie.bas.bg days of observations, June 14, 15, 17, and 20, 1842 1).
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FIG. 1. The liquid water patlLWP) data sets measured with a microwave radiometer during the ASTEX'92 field program; the specific
dates arda) June 14,b) June 15(c) June 17, andd) June 20.

They are chosen from among 26 data sets as being complete, D(r)=(|e(X;)— (P(Xi)|2> )
that is, not containing missing observation points, and as

forming a statistically homogeneous whole. Each profile isand scales as
assumed to satisfy the Taylor's hypothegld]. The time

resolution of the measurements is 5 min. Each data set con-

tains 288 points covering a 24 h observation length. The average is taken over all couples.( ,x;). Figure Zb)
If we knew the speed of the cloud displacement we couldrepresentS the best-line fit to the ensemble averdyed
retrieve the discretization distance and then proceed with thg., £(2)=0.49+0.02. The scaling range spans from the

analysis in space rather than in time. That would have giveRjjscretization time interval up te'1 h,35 min. The scaling

us a more direct comparison with FIRE and ASTEX in terms, 56 i the different sets is about the same. Only the June
of distances, especially for the scaling ranges. It would, hows 7 4ata set exhibits a wider scaling range up® h. The
ever, also assume that the cloud properties are invariant du\r/'alues ofZ(2) for the four data sets are included in Table I.

ing the advection time. This assumption is certainly queSxyqgh it cannot be claimed that the scaling counterpart of
tionable, especially since our observations were taken on thme Wiener-Khinchin relatiofi12]

windward side of an island.

The scale invariance properties of each of the data sets are B={(2)+1 3
first studied through their temporal power spectrum obtained
from the Fourier transform of the data. Figuré@)2depicts holds for such short time seriésence not well-define@),
the spectrumE(f)~f~# averaged over the four data sets. one can recognize the advantage in employingxtie) scal-
The reference solid line corresponds@e- 1.49. Due to the ing properties in parallel with the spectrum analysis for esti-
relatively short length of the series, their scaling range is notnating the spectral exponent. It should be noted also that the
well defined. In an attempt to achieve better defined scalingpan of{(2) does not make a substantial difference when
limits, we analyze the second-order structure function whictattributed tog. This is illustrated by the dashed lines in Fig.
for a signale(x;),i=0, ... A, reads 2(a) (hardly recognizable They correspond to spectral ex-

D(r)ec(r)¢?. 2



2780 KRISTINKA IVANOVA AND THOMAS ACKERMAN PRE 59

10° . . then the process is stationary, that ¢gx) is statistically
invariant by translation irx. If 8>1, the signal is nonsta-

10' | 1 tionary. If in addition <3, then the field has stationary
increments, in particular, the small-scale gradient field will

10° | 4 be stationary. Therefore, the data we analyze are nonstation-

ary with stationary increments.

& Ill. SINGULAR MEASURES AND gTH-ORDER
107} 1 STRUCTURE FUNCTIONS

" The present section considers the intermittency and the
3 ] nonstationarity features of the LWP data. The singular mea-
B sure(SM) analysis of the small-scale gradient field obtained
] 3 from the data is performed to account for the intermittency,

107 : - l+r-1
(a) f (hours™) r ; lo(Xi+1) = (X))
e(r;h)=

(le(Xi+1)—e(x)])
(4)

38} The scaling properties of the ensemble averagbdrder of
the stationary field:(r;1) are sought,

al ] (e(r;HH~(r)~ %@ g=0. (5

Z‘:" A hierarchy of nondecreasing functions follow3(q)
240l | =K(q)/(g—1) related also to the generalized dimensions
D(g)=1-C(q). Since K(1)=0, I'Hospital's rule in the
limit of g—1 provides a straightforward measure of inho-
44t j mogeneity of the field,

. _dK(q)
. Cl_ dq q=l7 (6)

(b) B log o (I:I%l? rs)
whereC; is an intermittency parametgt4]. The sparseness
FIG. 2. Ensemble-averaged) power spectrunE(f) and (b)  of the signal and presumably, therefore, of the quantity’s

second-order structure function for the remote sensing LWP datajjstribution is characterized bg,. Large C, describes a
The reference solid line correspondsge-1.49. The dashed lines  hjgh |evel of intermittency and spikiness.

m_arkB:l.49t 0.12.(b) The straight line represents the scaling fit  pultifractal analysis can also be conducted with the
with {=0.49+0.12 up to about 1 h,35 min. gth-order structure function&Sp),

ponentsB=1.47+0.02. The value of3=1.49 is somewhat (le(Xi+r)— @(X)|H~t¢@,  g=0. (7)
greater than the spectral exponents reported by Detvéd. . .

[1] for FIRE, B=1.36+0.06, and for ASTEX,8=1.43 ~__Among the nonincreasing exponertttq) =¢(q)/q, the
+0.08. parameter of nonstationarity;=H(1) has a geometrically

Arguments of stationarity are discussed at length by Davign€aningful interpretatiofl.5, 1], describing the roughness of

et al. [1,13]. They can be summarized as follows.A& 1, the signal. )
For each data set we apply the singular measures and

structure functions analysis. First we calculate the singular
measures and structure functions for valueq op to 3.8 for
®ach day. Then an ensemble average is taken over the four
data sets for every value of By applying a least-squares-
fitting procedure to the structure functions in a log-log plot

TABLE I. Summary of the nonstationarityH;) and intermit-
tency (C,) parameters for the four studied days and their ensembl
average. The fourth column hosts values{(2) and the last col-
umn hosts the values &(2).

_ within the predefined range(1 h,35 min), we estimate
Date ((1)=H, Cl {2 K@) the exponentZ(q). The same scheme is followed for the
June 14 0.24 0.09 0.450.04 0.19 singular measures to assess ) function, but for the
June 15 0.33 0.10 0.380.02 0.20 whole range of time intervals since this yields the lowest
June 17 0.28 0.08 0.670.01 0.13 error-bar spreadFig. 3). The valueH; is highlighted by a
June 20 0.34 0.13 0.440.02 0.27 circle, and a line tangent t§(q) atg=1 is drawn to em-
Ensemble phasize theC;=K’(1) estimate. For largg both functions
Averaged 0.29 0.10 0.490.02 0.19 suffer from the sampling limitationd] as the structure func-

tion values become very small, making the analysis difficult
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and resulting in larger error spreads f{q). At the same FIG. 4. The H,,C,) plot summarizing the liquid water data

time, K(q) changes to a linear behavior which is interpreted“’jsuns from the direct measurements during FIRE@side-down
to be the result of a single event dominating the stati§igs ~ t1angle and ASTEX'92(triangle together with the remotely mea-
Such properties of the characteristic exponents were e)gured LWP QUrlng ASTEX marked by solid dots for individual days
pected because of the relatively short data set. However, d'd by @ diamond for their ensemble average. See Table | for
nontrivial dependence for small and intermedigtés ob- 1,C1) values for each day. The empty dots correspond to

. . . . Brownian motion and fractional Brownian motion cases.
served, namely, the concavity of tl§éq) function which is
interpreted to denote the multiaffinift6] of the LWP field. ) .
The convexity of thek(q) function reflects the multifracta- N€Nts- This good agreement betweensitu and remotely
lity of the absolute gradients of the field at small scalesSensed statistical characte_rlsncs of boundary layer clogds
Table | contains the specific values of the parameters of noreU99€sts that long time series of ground-based observations
stationarityH, and intermittencyC,, as well ask(2), for can be used to deduce the structure of these clouds.
the four data sets studied and their averages. It should be
noted that the standard multifractal inequaliti€2)=C; IV. CONCLUSIONS
and{(2)/2<H, are satisfied for all the cases except for June
17. For this data set the second inequality does not hold; this We use multifractal singularity analysis argth-order
is attributed to a large burst of activity at the end in thestructure function analysis to study time series of LWP ob-
corresponding Fig. (t), which imparts more statistical infor- tained via remote sensing measurements. The behavior of the
mation to the prefactors in E@7) than to the exponents. ~ ensemble-averaged characteristic exponé(ty and K(q)

In Fig. 4 the results for the two parameters are summareflects the multifractal nature of the LWP record. The non-
rized on the H,C,) plane. The H,,C;) dots correspond- stationarity and intermittency of the real-world data are sum-
ing to the four data sets are noted by solid dots. The diamongharized in an K ;,C,) point (ASTEX/RS in the “mean
labeled ASTEX/RS marks the ensemble-averaged estimaf8ultifractal plane.” It is found to be very close to points
corresponding td1,=0.29 andC,=0.10. On the same plane obtained from directly measured LWC. The agreement con-
are drawn the results obtained by Daeisal. [1,13] and firms the usefulness of remote sensing for the characteriza-
Marshaket al. [7] for directly measured LWC during the tion of the cloud structure in the lower atmosphere.

FIRE'87 (the upside-down triangleH,;=0.28, C;=0.10)
and ASTEX'92(the triangleH,=0.29, C,=0.08) field pro-
grams. In addition, by empty dots are marked the Brownian
motion (Bm) at (H;,C;)=(0.5, 0) and the fractional K.l. gratefully thanks M. Ausloos for his comments on the
Brownian motion(fBm) at (H,,C;)=(1/3, 0). The latter manuscript. K.I. appreciates the hospitality of the Labora-
emphasize the difference between the multifractal data antbire de Téecommunications et Tedeection, Universite
the standard monofractal model. We consider the close proxzatholique de Louvain where she currently works under the
imity of the nonstationarity and intermittency parameters forSSTC Program of the Belgium government. Grant No. F-532
direct and remote measured liquid water as a strong indicasf the Bulgarian National Fund for Scientific Investigations
tion of the reliability of the multifractal estimates obtained is also acknowledged. T.A. acknowledges the support of the
from the remote sensing measurements. Indeed, the intermiHASA FIRE Program for the collection of the ASTEX data
tency parameter for all cases mentioned is within the rangand the support of the U.S. DOE, Atmospheric Radiation
of C;=0.11*0.04 for turbulent velocity fields, obtained by Measurement PrografGrant No. DOE DE-F602-90ERor
Marshak et al. [7] using the range of second-order expo-data analysis.
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